
Combining Formal Methods and Industrial
Pragmatics

Eric L. McCorkle

November 2, 2016



Dependent Types (very briefly)

Dependently-typed languages are equipped with very powerful type
systems

▸ Type systems are strong enough to express full specifications

▸ Type-checking amounts to proving implementations behave
according to spec

▸ Must still get the specification right! (Who watches the
watchers?)

▸ Proofs resemble code, must be developed and maintained like
code

▸ Powerful tool for building security in!



“Industrial” Programming Languages

What makes a language successful in the “Real World”?

▸ Realities: very large codebases, code evolution, staff turnover,
differing skill-levels, cost/benefit tradeoffs, compatibility, etc.

▸ Resist bit-rot, withstand inelegance, hold up under refactoring

▸ “Harm-reduction” often works better than “thou shalt”

What tends to work well?

▸ Optimize for least eventual cost (or pain)

▸ Modularization, encourage good practices, code reuse

▸ Present complex ideas in an accessible fashion

▸ API/library design is an art-form to be celebrated



Vision of “Industrial” Dependently-Typed Languages

How can we make depndent types and verification suitable for
industrial programming?



Gradual Proof Checking (and Typing)

▸ Making people prove their entire program correct before
running it is a non-starter for industry

▸ People develop software iteratively

▸ Cost/benefit tradeoffs, risk profiles, ROI differ over
components

▸ “Two-phase” type/proof-checking: first phase is decidable,
second phase does verification.

▸ Prove critical components correct, rely on testing for the rest,
gradually work your way outward

▸ Provides a smooth transition from prototypes to verified
systems

▸ Go a step further: do this with type checking in general
(gradual typing)



Managing Large Verified Codebases

How would we manage large bodies of proofs about code?

▸ Proofs very closely resemble code

▸ Provide ability to automate proofs using the same language as
the code

▸ Apply known techniques that work for code management:
modularization, small units of functionality, API design

▸ Draw on historically successful language concepts (OO
features, typeclasses, etc) to design constructs for managing
verification

▸ Draw on (and perhaps refactor) parts of mathematics,
particularly abstract algebra



A Vision of Industrial Dependent-Typed Languages

▸ View as a specification/reasoning system built into the
language

▸ Proof obligations provided as an artifact of compilation,
usable to other tools)

▸ Gradual “pay-as-you-go” typing and proof-checking

▸ Start with no spec, leave proof obligations unproven

▸ Develop spec iteratively, prove obligations where advantageous

▸ Proofs look like code, make use of traditional software
engineering techniques

▸ A fully-mature module has specs, proofs, and facilities for
automating proofs about the module



▸ Happy to discuss these ideas in greater detail

▸ I am actively working on a language to implement these ideas

▸ Particularly interested in how to improve infosec through
better languages

▸ Email me (eric@metricspace.net) or come find me to talk more


