Design of a Public-Key Trust System for FreeBSD

Eric L. McCorkle

June 7, 2018



Motivating Example

Consider a proposal for signing the kernel and modules:

» Extend Executable Linkable Format (ELF) to carry public-key
signatures

» Sign kernel and modules with a private key for each build
» Kernel and boot loader carry the verification (public) key
» Loader checks kernel/module signatures before booting

» Kernel checks module signatures before allowing them to be
loaded

» UEFI and GRUB both have equivalent facilities



Cryptography as Trust

Signed kernels and modules are an example of cryptography as
trust.

» Cryptography is most often viewed as a confidentiality
mechanism

» However, it can also fulfill other purposes, such as
authorization

> In FreeBSD (and many other systems) the kernel enforces
authorization rules

> Relies on memory protection, internal tables, user IDs, etc to
restrict who may access/modify

» Signed kernel modules allow authorization to restrict the
content of the modules/kernel



Public-

Key Cryptography in System Context

Public-key cryptography can extend and/or strengthen many
security features of operating systems:

>

>

Signed kernels, modules, executables, libraries

Distribution and delegation in a capabilities-based access
control system (capsicum)

Strong (cryptographic) data access controls

“Traditional” public-key functions (session key negotiation,
protocols)

System-level trust management



Trust Management

Trust management is vital in a public-key system.

>

>

>

Some public key (or set of them) serves as a root of trust
Trust can be extended to additional keys through signatures

Chains of trust can be formed by signing each successive key
with the previous key

Public-Key Infrastructure (PKI) systems allow for a tree-like
structure

Other systems (PGP) use a web-of-trust (general graph)



Table of Contents

Design Overview



Trust System Design for FreeBSD

» Runtime Trust Database: In-kernel API for managing
root/intermediate keys

» devfs-based interface for adding/revoking intermediate keys
from userland

» Trust base configuration: Configurations for building in root
keys, loading intermediate keys at boot.

» Signed ELF binary format extension, conventions for signing
vital config files

» NetBSD VeriExec integration



Kernel API

» Root certificates are established at boot, cannot be changed
during runtime (without hardware intervention)

» Database tracks trust relationships, forms a forest with root
keys as roots

> Intermediate certificates can be added, providing they are
signed by an existing root or intermediate certificate

» All keys have a revocation list (initially empty), can be set for
any key

» Any intermediate certificates in their signers’ revocation lists
are removed, along with their descendents

» Can check a signature against the database

» Can enumerate database



devfs Interface

Present device nodes under /dev/trust/
Control interface at /dev/trust/trustctl:
» Write an X.509 certificate signed by a trusted certificate to
install as an intermediate certificate (check revocation lists)
» Write an X.509 revocation list signed by a trusted certificate to
install it as the signer's revocation list (and do revocations)
» Use binary DER encoding (easy/safe to parse) for input

v

v

» Enumeration interfaces at /dev/trust/certs,
/dev/trust/rootcerts:
» /dev/trust/certs reads back all certificates
» /dev/trust/rootcerts reads back just roots
» Read back certificates in PEM encoding, allows nodes to be
used as CAcert configuration for many applications

v

Could also render entire forest as directory structure



Obtaining Root Keys

There are several options for obtaining root keys at startup:
» Build directly into loader/kernel
» Advantage: Secure, better cipher suite
» Disadvantage: Inflexible, difficult to recover from mishaps, bad
for standard images
» Obtain from secure boot infrastructure or hardware
» Advantage: Integration with hardware/secure boot, flexible
» Disadvantage: Often weak crypto suites (RSA 2048 is as good
as it gets)
> Pass from loader to kernel via keybuf
» Advantage: Flexible, full cipher suite
» Disadvantage: Less secure than compiling in



Trust Base Configuration

» Establishes trust configuration for builds and system startup

» Store trust root certs at /etc/trust/root/certs (keys at
/etc/trust/root/keys if we have them)

> Intermediate trust certs at /etc/trust/certs are loaded by
rc at boot

» Trust root keys converted to C source, compiled into a static
library

» Ultimately compiled into loader and possibly kernel

» Kernels may be signed with an ephemeral intermediate key,
stored at /boot/kernel/cert.pem



Example Trust Configurations

» Preferred configuration is one locally-generated trust root key

» Third-party vendor certs don't have a corresponding signing
key

> In the preferred configuration, all vendor keys are signed by
the local trust root key

» Standard distributions can be signed with FreeBSD
foundation's vendor key

> Likely will want to have installer generate the local key, then
inject it into the loader, then sign FreeBSD's vendor cert

» Alternative config for high security networks has no local keys,
only the network’s vendor cert, builds produced and signed on
a central machine



Formats and Tooling

v

OpenSSL is part of FreeBSD base system

v

X509 certificates used by many applications, sensible format
» DER binary encoding is best for input format to device nodes
» Easy to parse

» Disinguished encoding allows byte-to-byte comparisons
» Can be generated by openssl command-line tool

v

PEM encoding is preferable for outputting trusted keys (used
by many applications)
DER for input, PEM for output

v



Signed Executables

» ELF file format based on sections, already has conventions for
extra metadata (DWARF, .comment, .note, etc)

» Cryptographic Message Syntax (CMS) supported by
OpenSSL/PKI, allows for detached signatures

> Signed executables have a .sign section, containing a CMS
detached signature

» Signatures are computed with a same-sized, zeroed-out .sign
section

» Signatures in this scheme can be added/verified /removed
using objcopy and openssl



A Note on Alternatives

Several altenative approaches exist:

>

>

GRUB uses detached GPG signatures

Linux has a system call-based kernel keyring feature

Reasons for not going with the alternatives:

>

Signed ELF binary scheme is compatible with existing
tools/installers; detached GPG signatures aren't

devfs control interface can be used by existing applications
w/o modification

PGP-compatible tools not in FreeBSD base system
Web-of-trust is arguably the wrong model for such a system

Revocation in PGP systems done by the key owner, not the
signitories



NetBSD VeriExec Framework

The NetBSD VeriExec framework also provides a file integrity
checking mechanism

>

>

>

MAC registry specifies authentication codes for arbitrary files
MACs are checked upon loading files, execve calls, etc.

Advantage: out-of-band integrity checks (doesn't require
in-file signatures like signed ELF)

Cannot manage delegated trust, less flexible than a public-key
mechanism

Basic integration: allow MAC registries to be loaded at any
point, if signed by a trusted key



UUID-Marked Executables

» VeriExec associates MACs with a path; can be inflexible

» Signed ELFs can be moved around freely (advantage of in-file
metadata)

» Hybrid mechanism: add a UUID to each ELF, can be
generated with 128-bit hash (SHA-1, RipeMD-128)

> Allow VeriExec to associate MACs to UUIDs as well as paths

» Executables can be marked with UUIDs once, never need to
be modified to add additional signatures

» UUID-marked executables can have other administrative uses



Table of Contents

Post-Quantum Cryptography



The Quantum Machines are Coming!

> Decent estimate: quantum machines capable of attacking
existing public-key crypto likely to arrive some time between 5
and 50 years from now

» Hidden-subgroup attack breaks RSA, elliptic-curve/classical
discrete logs (all common public-key crypto)

» Grover iteration: quadratic-speed attack against
symmetric-key, MACs, hashes (halfs bit security)

» Grover iteration is a theoretical attack (requires large
quantum memory, very long stability)

» Short version: symmetric-key, hashes, MACs safe, public-key
exchange/signatures broken



Post-Quantum Cryptography

» Post-quantum cryptography aims to develop classical
cryptographic methods that are secure against quantum
attacks (distinct from quantum cryptography)

» Viable post-quantum key exchange being deployed (SIDH)
» Post-quantum signatures don't have as nice a picture

» Hash-based signatures: reliable, very mature (date back to
Lamport) but have serious caveats

» Other post-quantum signature schemes are still under active
research, too new, or extremely impractical (> 1Mib
signatures, etc)



Hash-Based Signatures

» XMSS: Stateful hash-based signatures

» Good for finite number of signatures

» Signature size varies, but reasonable parameters give 1-4Kib

» Non-standard interface: updates “state” on every signing
operation

> Re-signing with old states destroys security properties

» Adam Langley: “Giant foot-cannon”

» SPHINCS: Stateless (big) hash-based signatures

» Classic public-key signature interface, no state
» Signature size is 40Kib



Using Hash-Based Signatures in Trust

The trust framework provides use cases where both schemes can
be used practically:

>

Stateful signatures are ideal for batch-signing: create key-pair,
sign, destroy private key

Stateful signatures also good for non-persisted key used,
controlled by kernel, generated at boot and destroyed at
shutdown.

Could use stateful signatures to issue delegated credentials
valid only for system uptime

SPHINCS signatures good for signing big messages, or signing
relatively small numbers of messages

Ideal for VeriExec manifests (likely to be much larger than
40Kib)



Table of Contents

Applications and Implementation



Applications

v

Signed kernel and modules
Trusted boot

v

v

Signed executables/configuration files

v

System-wide certificate configurations

v

Delegation of capabilities to remote systems



Implementation Roadmap

» Crypto library for kernel/loader (crypto overhaul is an open
topic)

> In-kernel runtime trust database, devfs interface

» Modify loader to check signatures

» Add code to check kernel module signatures

» Implement signelf (done)

» Modify build system to produce static library containing root
keys from trust base config, sign executables

» Modify rc to load intermediate certificates at boot



Crypto Overhaul (brief)

» Kernel crypto, OpenCrypto generally in need of overhaul (old,
poor organization)

» No public-key, no PKI parsing
» Loader only has a stop-gap measure for implementing GELI

» Popular options:

Import OpenSSL (tried once, failed)

LibreSSL (developed by OpenBSD)

BearSSL (new, still under development)

Earlier versions of this proposal included minimal PKI library

v

v vy

» Any solution will need to add new ciphers (use FreeBSD OID
space to create new OIDs, upstream to crypto)



Kernel Key Database, devfs

» Basic forest data structure with public keys/revocation lists

» Hardware interface: likely have abstraction layer for storing
individual keys

» Maintain forest structure in kernel

» devfs interface ends up being a straightforward use of kernel
API

» Kernel/Loader then has API for checking public-key signatures
(main goal)

» Use this to check signatures on executables, files, etc.



The signelf Utility

» Batch signer, streamlined tool for signing large numbers of
ELF binaries

» More convenient than using objcopy/openssl

» Gets keys/certs from system trust configuration by default

» Can generate an ephemeral key-pair for signing

» Writes out verification key for ephemeral key-pair, destroys
signing key

» Initial implementation using OpenSSL complete



Build System, rc Modifications

v

Convert trust root certificates into C code early in build

v

Create static library (1ibrootkeys.a)

v

Loader and Kernel can then compile in keys

v

rc.d script to install intermediate certificates/revocation lists
via devfs interface



Table of Contents

Feedback and Discussion



	Introduction
	Design Overview
	Post-Quantum Cryptography
	Applications and Implementation
	Feedback and Discussion

