
Design of a Public-Key Trust System for FreeBSD

Eric L. McCorkle

June 7, 2018



Motivating Example

Consider a proposal for signing the kernel and modules:

I Extend Executable Linkable Format (ELF) to carry public-key
signatures

I Sign kernel and modules with a private key for each build

I Kernel and boot loader carry the verification (public) key

I Loader checks kernel/module signatures before booting

I Kernel checks module signatures before allowing them to be
loaded

I UEFI and GRUB both have equivalent facilities



Cryptography as Trust

Signed kernels and modules are an example of cryptography as
trust.

I Cryptography is most often viewed as a confidentiality
mechanism

I However, it can also fulfill other purposes, such as
authorization

I In FreeBSD (and many other systems) the kernel enforces
authorization rules

I Relies on memory protection, internal tables, user IDs, etc to
restrict who may access/modify

I Signed kernel modules allow authorization to restrict the
content of the modules/kernel



Public-Key Cryptography in System Context

Public-key cryptography can extend and/or strengthen many
security features of operating systems:

I Signed kernels, modules, executables, libraries

I Distribution and delegation in a capabilities-based access
control system (capsicum)

I Strong (cryptographic) data access controls

I “Traditional” public-key functions (session key negotiation,
protocols)

I System-level trust management



Trust Management

Trust management is vital in a public-key system.

I Some public key (or set of them) serves as a root of trust

I Trust can be extended to additional keys through signatures

I Chains of trust can be formed by signing each successive key
with the previous key

I Public-Key Infrastructure (PKI) systems allow for a tree-like
structure

I Other systems (PGP) use a web-of-trust (general graph)



Table of Contents

Introduction

Design Overview

Post-Quantum Cryptography

Applications and Implementation

Feedback and Discussion



Trust System Design for FreeBSD

I Runtime Trust Database: In-kernel API for managing
root/intermediate keys

I devfs-based interface for adding/revoking intermediate keys
from userland

I Trust base configuration: Configurations for building in root
keys, loading intermediate keys at boot.

I Signed ELF binary format extension, conventions for signing
vital config files

I NetBSD VeriExec integration



Kernel API

I Root certificates are established at boot, cannot be changed
during runtime (without hardware intervention)

I Database tracks trust relationships, forms a forest with root
keys as roots

I Intermediate certificates can be added, providing they are
signed by an existing root or intermediate certificate

I All keys have a revocation list (initially empty), can be set for
any key

I Any intermediate certificates in their signers’ revocation lists
are removed, along with their descendents

I Can check a signature against the database

I Can enumerate database



devfs Interface

I Present device nodes under /dev/trust/
I Control interface at /dev/trust/trustctl:

I Write an X.509 certificate signed by a trusted certificate to
install as an intermediate certificate (check revocation lists)

I Write an X.509 revocation list signed by a trusted certificate to
install it as the signer’s revocation list (and do revocations)

I Use binary DER encoding (easy/safe to parse) for input

I Enumeration interfaces at /dev/trust/certs,
/dev/trust/rootcerts:

I /dev/trust/certs reads back all certificates
I /dev/trust/rootcerts reads back just roots
I Read back certificates in PEM encoding, allows nodes to be

used as CAcert configuration for many applications

I Could also render entire forest as directory structure



Obtaining Root Keys

There are several options for obtaining root keys at startup:
I Build directly into loader/kernel

I Advantage: Secure, better cipher suite
I Disadvantage: Inflexible, difficult to recover from mishaps, bad

for standard images

I Obtain from secure boot infrastructure or hardware
I Advantage: Integration with hardware/secure boot, flexible
I Disadvantage: Often weak crypto suites (RSA 2048 is as good

as it gets)

I Pass from loader to kernel via keybuf
I Advantage: Flexible, full cipher suite
I Disadvantage: Less secure than compiling in



Trust Base Configuration

I Establishes trust configuration for builds and system startup

I Store trust root certs at /etc/trust/root/certs (keys at
/etc/trust/root/keys if we have them)

I Intermediate trust certs at /etc/trust/certs are loaded by
rc at boot

I Trust root keys converted to C source, compiled into a static
library

I Ultimately compiled into loader and possibly kernel

I Kernels may be signed with an ephemeral intermediate key,
stored at /boot/kernel/cert.pem



Example Trust Configurations

I Preferred configuration is one locally-generated trust root key

I Third-party vendor certs don’t have a corresponding signing
key

I In the preferred configuration, all vendor keys are signed by
the local trust root key

I Standard distributions can be signed with FreeBSD
foundation’s vendor key

I Likely will want to have installer generate the local key, then
inject it into the loader, then sign FreeBSD’s vendor cert

I Alternative config for high security networks has no local keys,
only the network’s vendor cert, builds produced and signed on
a central machine



Formats and Tooling

I OpenSSL is part of FreeBSD base system

I X509 certificates used by many applications, sensible format
I DER binary encoding is best for input format to device nodes

I Easy to parse
I Disinguished encoding allows byte-to-byte comparisons
I Can be generated by openssl command-line tool

I PEM encoding is preferable for outputting trusted keys (used
by many applications)

I DER for input, PEM for output



Signed Executables

I ELF file format based on sections, already has conventions for
extra metadata (DWARF, .comment, .note, etc)

I Cryptographic Message Syntax (CMS) supported by
OpenSSL/PKI, allows for detached signatures

I Signed executables have a .sign section, containing a CMS
detached signature

I Signatures are computed with a same-sized, zeroed-out .sign
section

I Signatures in this scheme can be added/verified/removed
using objcopy and openssl



A Note on Alternatives

Several altenative approaches exist:

I GRUB uses detached GPG signatures

I Linux has a system call-based kernel keyring feature

Reasons for not going with the alternatives:

I Signed ELF binary scheme is compatible with existing
tools/installers; detached GPG signatures aren’t

I devfs control interface can be used by existing applications
w/o modification

I PGP-compatible tools not in FreeBSD base system

I Web-of-trust is arguably the wrong model for such a system

I Revocation in PGP systems done by the key owner, not the
signitories



NetBSD VeriExec Framework

The NetBSD VeriExec framework also provides a file integrity
checking mechanism

I MAC registry specifies authentication codes for arbitrary files

I MACs are checked upon loading files, execve calls, etc.

I Advantage: out-of-band integrity checks (doesn’t require
in-file signatures like signed ELF)

I Cannot manage delegated trust, less flexible than a public-key
mechanism

I Basic integration: allow MAC registries to be loaded at any
point, if signed by a trusted key



UUID-Marked Executables

I VeriExec associates MACs with a path; can be inflexible

I Signed ELFs can be moved around freely (advantage of in-file
metadata)

I Hybrid mechanism: add a UUID to each ELF, can be
generated with 128-bit hash (SHA-1, RipeMD-128)

I Allow VeriExec to associate MACs to UUIDs as well as paths

I Executables can be marked with UUIDs once, never need to
be modified to add additional signatures

I UUID-marked executables can have other administrative uses



Table of Contents

Introduction

Design Overview

Post-Quantum Cryptography

Applications and Implementation

Feedback and Discussion



The Quantum Machines are Coming!

I Decent estimate: quantum machines capable of attacking
existing public-key crypto likely to arrive some time between 5
and 50 years from now

I Hidden-subgroup attack breaks RSA, elliptic-curve/classical
discrete logs (all common public-key crypto)

I Grover iteration: quadratic-speed attack against
symmetric-key, MACs, hashes (halfs bit security)

I Grover iteration is a theoretical attack (requires large
quantum memory, very long stability)

I Short version: symmetric-key, hashes, MACs safe, public-key
exchange/signatures broken



Post-Quantum Cryptography

I Post-quantum cryptography aims to develop classical
cryptographic methods that are secure against quantum
attacks (distinct from quantum cryptography)

I Viable post-quantum key exchange being deployed (SIDH)

I Post-quantum signatures don’t have as nice a picture

I Hash-based signatures: reliable, very mature (date back to
Lamport) but have serious caveats

I Other post-quantum signature schemes are still under active
research, too new, or extremely impractical (> 1Mib
signatures, etc)



Hash-Based Signatures

I XMSS: Stateful hash-based signatures
I Good for finite number of signatures
I Signature size varies, but reasonable parameters give 1-4Kib
I Non-standard interface: updates “state” on every signing

operation
I Re-signing with old states destroys security properties
I Adam Langley: “Giant foot-cannon”

I SPHINCS: Stateless (big) hash-based signatures
I Classic public-key signature interface, no state
I Signature size is 40Kib



Using Hash-Based Signatures in Trust

The trust framework provides use cases where both schemes can
be used practically:

I Stateful signatures are ideal for batch-signing: create key-pair,
sign, destroy private key

I Stateful signatures also good for non-persisted key used,
controlled by kernel, generated at boot and destroyed at
shutdown.

I Could use stateful signatures to issue delegated credentials
valid only for system uptime

I SPHINCS signatures good for signing big messages, or signing
relatively small numbers of messages

I Ideal for VeriExec manifests (likely to be much larger than
40Kib)



Table of Contents

Introduction

Design Overview

Post-Quantum Cryptography

Applications and Implementation

Feedback and Discussion



Applications

I Signed kernel and modules

I Trusted boot

I Signed executables/configuration files

I System-wide certificate configurations

I Delegation of capabilities to remote systems



Implementation Roadmap

I Crypto library for kernel/loader (crypto overhaul is an open
topic)

I In-kernel runtime trust database, devfs interface

I Modify loader to check signatures

I Add code to check kernel module signatures

I Implement signelf (done)

I Modify build system to produce static library containing root
keys from trust base config, sign executables

I Modify rc to load intermediate certificates at boot



Crypto Overhaul (brief)

I Kernel crypto, OpenCrypto generally in need of overhaul (old,
poor organization)

I No public-key, no PKI parsing

I Loader only has a stop-gap measure for implementing GELI
I Popular options:

I Import OpenSSL (tried once, failed)
I LibreSSL (developed by OpenBSD)
I BearSSL (new, still under development)
I Earlier versions of this proposal included minimal PKI library

I Any solution will need to add new ciphers (use FreeBSD OID
space to create new OIDs, upstream to crypto)



Kernel Key Database, devfs

I Basic forest data structure with public keys/revocation lists

I Hardware interface: likely have abstraction layer for storing
individual keys

I Maintain forest structure in kernel

I devfs interface ends up being a straightforward use of kernel
API

I Kernel/Loader then has API for checking public-key signatures
(main goal)

I Use this to check signatures on executables, files, etc.



The signelf Utility

I Batch signer, streamlined tool for signing large numbers of
ELF binaries

I More convenient than using objcopy/openssl

I Gets keys/certs from system trust configuration by default

I Can generate an ephemeral key-pair for signing

I Writes out verification key for ephemeral key-pair, destroys
signing key

I Initial implementation using OpenSSL complete



Build System, rc Modifications

I Convert trust root certificates into C code early in build

I Create static library (librootkeys.a)

I Loader and Kernel can then compile in keys

I rc.d script to install intermediate certificates/revocation lists
via devfs interface



Table of Contents

Introduction

Design Overview

Post-Quantum Cryptography

Applications and Implementation

Feedback and Discussion


	Introduction
	Design Overview
	Post-Quantum Cryptography
	Applications and Implementation
	Feedback and Discussion

